QnrS1- and Aac(6′)-Ib-cr-Producing Escherichia coli among Isolates from Animals of Different Sources: Susceptibility and Genomic Characterization
نویسندگان
چکیده
Salmonella enterica and Escherichia coli can inhabit humans and animals from multiple origins. These bacteria are often associated with gastroenteritis in animals, being a frequent cause of resistant zoonotic infections. In fact, bacteria from animals can be transmitted to humans through the food chain and direct contact. In this study, we aimed to assess the antibiotic susceptibility of a collection of S. enterica and E. coli recovered from animals of different sources, performing a genomic comparison of the plasmid-mediated quinolone resistance (PMQR)-producing isolates detected. Antibiotic susceptibility testing revealed a high number of non-wild-type isolates for fluoroquinolones among S. enterica recovered from poultry isolates. In turn, the frequency of non-wild-type E. coli to nalidixic acid and ciprofloxacin was higher in food-producing animals than in companion or zoo animals. Globally, we detected two qnrS1 and two aac(6')-Ib-cr in E. coli isolates recovered from animals of different origins. The genomic characterization of QnrS1-producing E. coli showed high genomic similarity (O86:H12 and ST2297), although they have been recovered from a healthy turtle dove from a Zoo Park, and from a dog showing symptoms of infection. The qnrS1 gene was encoded in a IncN plasmid, also carrying bla TEM-1-containing Tn3. Isolates harboring aac(6')-Ib-cr were detected in two captive bottlenose dolphins, within a time span of two years. The additional antibiotic resistance genes of the two aac(6')-Ib-cr-positive isolates (bla OXA-1, bla TEM-1,bla CTX-M-15, catB3, aac(3)-IIa, and tetA) were enclosed in IncFIA plasmids that differed in a single transposase and 60 single nucleotide variants. The isolates could be assigned to the same genetic sublineage-ST131 fimH30-Rx (O25:H4), confirming clonal spread. PMQR-producing isolates were associated with symptomatic and asymptomatic hosts, which highlight the aptitude of E. coli to act as silent vehicles, allowing the accumulation of antibiotic resistance genes, mobile genetic elements and other relevant pathogenicity determinants. Continuous monitoring of health and sick animals toward the presence of PMQR should be strongly encouraged in order to restrain the clonal spread of these antibiotic resistant strains.
منابع مشابه
The first report of the qnrB19, qnrS1 and aac(6´)-Ib-cr genes in urinary isolates of ciprofloxacin-resistant Escherichia coli in Brazil.
In this study, we investigated the presence of plasmid-mediated quinolone resistance (PMQR) genes among 101 ciprofloxacin-resistant urinary Escherichia coli isolates and searched for mutations in the quinolone-resistance-determining regions (QRDRs) of the DNA gyrase and topoisomerase IV genes in PMQR-carrying isolates. Eight isolates harboured the qnr and aac(6')-Ib-cr genes (3 qnrS1, 1 qnrB19 ...
متن کاملPrevalence of plasmid-mediated quinolone resistance in Escherichia coli isolated from diseased animals in Taiwan
Escherichia coli (E. coli) is a zoonotic pathogen that often causes diarrhea, respiratory diseases or septicemia in animals. Fluoroquinolones are antimicrobial agents used to treat pathogenic E. coli infections. In this study, 1,221 E. coli strains were isolated between March, 2011 and February, 2014. The results of the antimicrobial susceptibility testing showed a high prevalence of quinolone ...
متن کاملGenetic characterization of fluoroquinolone resistant Escherichia coli from urban streams and municipal and hospital effluents.
Escherichia coli with reduced susceptibility to ciprofloxacin, isolated from urban streams, wastewater treatment plants and hospital effluent between 2004 and 2012, were compared based on multilocus sequence typing (MLST), quinolone and beta-lactam resistance determinants and plasmid replicon type. Isolates from the different types of water and isolation dates clustered together, suggesting the...
متن کاملFirst detection of plasmid-mediated, quinolone resistance determinants qnrA, qnrB, qnrS and aac(6')-Ib-cr in extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in Budapest, Hungary.
Sir, Quinolone resistance in Enterobacteriaceae usually results from mutations in genes coding for chromosomally encoded type II topoisomerases, efflux pumps or porin-related proteins. Recently, transferable, plasmid-borne, quinolone resistance genes—qnrA, qnrB, qnrS, cr variant of aac(60)-Ib, qepA and oxqB—have been observed in clinical isolates, more frequently among strains producing plasmid...
متن کاملPrevalence of plasmid-mediated quinolone resistance in Escherichia coli isolates in Wenzhou, Southern China, 2002-2008.
A total of 514 consecutive clinical Escherichia coli isolates, irrespective of resistance background, were collected in the period 2002-2008 in Wenzhou, southern China, to investigate the prevalence of plasmid-mediated quinolone resistance (PMQR). The dominant PMQR gene was aac(6')-Ib-cr, followed by qnr, whereas qepA was absent. A total of 253 (49.2%) of these isolates were aac(6')-Ib-positive...
متن کامل